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Abstract—In the presence of human driven vehicles (HDVs),
traffic shock waves are a naturally occurring phenomena, which
contributes to congestion and efficiency degradation in highway
networks. The introduction of connected autonomous vehicles
(CAVs) with advanced sensing, actuation and communication
capabilities allow new approaches in control to be applied in
order to solve the problem of shock waves. This work on shock
wave dissipation, introduces a communication-based cooperative
control method for CAVs in multi-lane highways in a mixed traffic
setting. The method allows for proactive control application and
exhibits good shock wave dissipation performance even with low
CAV penetration levels. Results are verified on a three lane
circular highway loop using realistic traffic simulation software.

I. INTRODUCTION

Modern transportation systems are witnessing a transition
from vehicles which completely rely on human drivers for
decision making and control, to automated systems which
perform a large range of activities without the need for human
intervention. With the development of on-board sensing and
communication technology in modern CAVs, research now
focuses on ways in which CAVs can contribute to solving
some of the persistent problems which have been plaguing
road and highway infrastructure for decades. A major driving
factor of this is the advent of 5G networking, which enabled
vehicles to share larger amounts of data at low latency [1],
from vehicle to vehicle (V2V) and from vehicle to infras-
tructure (V2I). Furthermore, on-board sensing technology has
also seen drastic improvements. Modern vehicles often come
equipped with radar sensors, vision based sensors and even
lidar ranging sensors [2]. This allows vehicles to observe more
of their surroundings and control algorithms can leverage this
information in order to make better decisions.

This research focuses on using the communication and
sensing capabilities of modern CAVs to solve the problem
of stop and go waves in highway networks. Stop and go
waves, also known as shock waves, are characterized by the
traffic condition in which vehicles accelerate and decelerate
in a periodic manner. This is a common cause of overall
network efficiency degradation. Once a shock wave forms,
if left unchecked, it usually resolves only when the demand
(vehicles entering the highway) reduces. As such, in high
density periods, shock waves can last for hours on end.
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Shock waves are also a major contributor to increased fuel
consumption on highways, due to the large variance in velocity
experienced by vehicles facing these conditions. In high traffic
density highway conditions, these shock waves can easily be
generated by even the simplest of triggers such as a few cars
slowing down due to a distraction on the side of the road.
Other common triggers for shock waves include busy highway
merge junctions, disabled vehicles on the side of the road,
vehicle collisions and road construction activities. The main
contributing factor to shock wave generation is the latency
introduced by human decision making.

The major issue in dealing with shock waves lies in the
difficulties in sensing highway conditions and subsequently
actuating vehicles in a suitable manner to dissipate the shock
wave. Traditionally, these were carried out by infrastructure
based sensing and variable speed limits. However, with the
advent of CAVs, many more options for sensing, actuation
and control have opened up. Even at low percentages of
CAVs to HDVs (hereafter referred to as CAV penetration
levels), the CAVs can act as Lagrangian sensors, collecting
local information about the state of highway traffic. This
local information can thereafter be combined to obtain a
global state of traffic. Furthermore, CAVs can also act as
Lagrangian actuators, allowing the control of themselves and
their surrounding vehicles via inter-vehicle interactions. Thus,
the slowing down and speeding up of HDVs can be achieved
by suitable actuation of the CAVs dispersed among the HDVs.

Literature review

The problem of traffic shock wave generation and mitigation
has been studied in field experiments conducted by Sugiyama
et al. [3] and Stern et al. [4]. Here, vehicles were placed in a
single file loop and in [4], one ego vehicle was used to apply
control for shock wave dissipation. The use of vehicle platoons
to help reduce shock waves in single lane roads was studied in
[5]. An optimal control approach to this problem is explored
in [6] which allows for multiple ego vehicles on a single lane
ring-road, but requires the assumption that ego vehicles have
access to the global traffic state. While these approaches yield
effective results in single lane roads, on multi-lane highways
the control strategies need to be revised. The use of V2V
communication for shock wave suppression is considered in
[7], which explores the idea of changing driving parameters
when shock waves are detected downstream.



Contribution

Many existing methods for shock wave dissipation rely on
assumptions such as availability of global information or the
presence of a single lane ring highway structure. Due to these
assumptions, these methods are often difficult to implement
and perform poorly in practical highway scenarios.

The main contribution of this work is to introduce a method
which utilizes the communication capabilities of CAVs in
order to provide good shock wave dissipation performance in
multi-lane complex highway environments. Our cooperative
control method allows each ego vehicle to take proactive
control actions when compared to most methods which are
reactive to the presence of shock waves. Furthermore, unlike
most existing methods, the performance of our method is
independent of the highway structure and the algorithm would
perform identically on either a ring road or a straight road.

Our method was tested using the realistic SUMO traffic sim-
ulation system, and the results and comparisons are presented.
We show that our method leads to improved shock wave
dissipation on a multi lane highway. Further tests also show
that, even with very low CAV penetration levels, effective
shock wave dissipation can be achieved with our method.

II. HIGHWAY AND VEHICLE MODELS

In this section, we model the highway infrastructure used
in our research, and the characteristics of the autonomous
vehicles used as both sensors and actuators for shock wave
dissipation. A section of the highway model is shown in Fig. 1,
in which lane structure, HDVs, CAVs and CAV sensor ranges
are highlighted.

Fig. 1: Modeling a highway section including vehicles

A. Modeling the physical highway structure

The highway stretch is modeled in the form of a loop. This
design decision was made in order to simulate an infinite
stretch of a multi lane highway. We set the length of the
highway loop to 1 km and the number of lanes to 3. The
length of the loop and number of lanes are both parameters
that can be modified. It should also be possible to change
the number of vehicles on this highway loop as necessary. A
three lane highway is selected in order to accurately represent
the effects of vehicle lane changing on shock wave creation
and dissipation. The resulting simulation is more realistic,
highlights the effects of interactions between vehicles and
provides a more accurate representation of the conditions faced
by vehicles under highway shock wave conditions.

B. Vehicle Model

Two different types of vehicles are used in this research.
Human driven vehicles whose motion is modeled according
to section III, and CAVs modeled as follows.

For the high level controller proposed for shock wave
mitigation, we find that it is unnecessary to consider the highly
non-linear nature of the dynamics of real-world vehicles. In
this research, we assume that the low-level control of each
CAV is managed by a local controller ci, which is also
responsible for the control of lateral motion that keeps the
vehicle in lane. This allows the ith vehicle to be modeled as
a point object moving along the center of the lane according
to a non-linear differential equation:

ṡi = f(t, si, ci), si(t
0
i ) = s0i (1)

where t0 is the initial time the vehicle enters the highway.
Therefore, we can define the high-level longitudinal vehicle
dynamics by the following velocity control scheme:

ṡi = vi

vi(t) = ui(t)
(2)

where si(t), vi(t), and ui(t) denote the position, velocity and
applied control of each vehicle i respectively, along the direc-
tion of the lane, for i ∈ {1, . . . , n}. n is the number of CAVs
on the modeled highway stretch. Here, it is important to note
that the velocity control requested by the high-level controller
should be reachable by the low-level vehicle controller ci in
system (1). Additionally, as the control applied by the high
level controller is independent of the lane the CAV is in, we
also assume that the lane changing procedures are handled by
a separate lane change controller.

Each CAV i, is assigned an integer variable bi ∈
{1, , . . . ,m} which signifies which lane it is on, with m
denoting the number of lanes. It also has a length li parameter,
and bounded acceleration capabilities characterized by its
maximum acceleration amax and maximum braking amin
capability. Therefore, all the CAVs are completely defined by
the state vectors:

xi(t) = [si(t), vi(t), b
i, li, aimax, a

i
min]T (3)

for i ∈ {1, . . . , n}.
With regards to the sensing capabilities of the CAVs, each

CAV is assumed to have the minimum required on-board
sensing capabilities to detect the positions and velocities of
surrounding vehicles within a realistic sensor range. Each CAV
can track the positions of up to eight adjacent non-occluded
vehicles surrounding it. The surrounding vehicles that a CAV
could track are highlighted in Fig. 2. In practice the actual
number of vehicles tracked may be lower due to factors such
as the density level and the lane the CAV occupies.

When considering the V2V communication capabilities of
each vehicle, we assume that the CAVs communicate using
a combination of IEEE 802.11p and 5G networks. In this
work we do not consider network delay and packet loss during
transmission. Vehicles within a realistic communication range



Fig. 2: Modeling sensing capability of CAVs

of each other are assumed to communicate shared information
in real time.

III. MICROSCOPIC TRAFFIC MODELS

The process of modeling vehicle behavior in large scale
highway networks usually involves two separate models. A car
following model, used to define the longitudinal movement of
a vehicle, considering both its interactions with a lead vehicle
and safety parameters. A lane change model, used to determine
the appropriate choice of lane, and the parameters necessary
for a safe lane change maneuver in multi-lane highways. Some
of the widely accepted car-following models adopted in traffic
modeling and simulation include the Krauss model [8], the
Wiedemann model [9] and the Intelligent Driver Model (IDM)
[10]. In this research, we opt to use the Krauss model due to
the simplicity of the model, its accuracy, and the ease in which
parameters relating to human reaction speed can be adjusted.

A. Krauss Car-following Model

The Krauss model [8] developed in 1997, enables the direct
computation of the target control velocity needed to achieve
safe car following behavior. The behavior of the vehicle in
this model depends on if it is in free motion or interacting
motion. In free motion, there is no lead vehicle affecting the
ego vehicle and the command velocity u(t) is governed by the
road speed limits v̄ as shown in equation (4). Additionally, u(t)
is also constrained by the acceleration capabilities of the ego
vehicle, characterized by its maximum acceleration amax and
maximum braking amin capabilities as shown in equation (5).
Here v(t) represents the current velocity of the ego vehicle
and ∆t is the time step.

0 ≤ u(t) ≤ v̄ (4)

amin∆t ≤ u(t)− v(t) ≤ amax∆t (5)

In the case of interacting motion, the ego vehicle is affected
by the behavior of the lead vehicle. Therefore, in addition to
the constraints in equations (4) and (5), a safe velocity vs(t)
is computed considering the lead vehicle velocity vl(t), gap to
lead vehicle ∆s(t) and the driver reaction time τr as shown
in equation (6). Here, b(v(t)) represents the deceleration
function.

vs(t) = vl(t) +
∆s(t)− vl(t)τr

v(t)
b(v(t)) + τr

(6)

Therefore, the desired command velocity vd(t) is computed
as the minimum of the speed limit, acceleration bound and
safe following velocity as shown in:

vd(t) = min(v̄, v(t) + amax∆t, vs(t)) (7)

Finally, the command velocity u(t) is set by considering the
random perturbations η that occur due to both the imperfection
in human drivers and vehicle actuation as shown in:

u(t) = max(0, vd(t)− η) (8)

A key factor for the choice of the Krauss model in this
research, is the accessibility of parameters τr and η which
allow the overall modeling of human driving imperfections
and reaction time. These factors are essential in shock wave
research as they are usually the major contributors to sponta-
neous shock wave generation.

B. Lane change model

When we consider a large scale simulation of a multi-lane
highway, the modeling of lane change behavior also plays
an important role. This model involves the computation of
speed adjustments necessary to change lane, the choice of
the best lane to change to and the safety criteria in choosing
suitable gaps for a lane change maneuver. Lane change can be
necessitated by strategic requirements such as taking the next
off ramp, speed gain requirements or cooperative requirements
which involve changing lanes to allow other vehicles to pass.
In this research we use the model developed by Erdmann
[11], as it provides many parameters for fine tuning each
vehicle’s lane changing behavior. This model carries out the
tasks of selecting the best lane in order to maximize vehicle
requirements, choosing when to merge depending on certain
safety criteria, and the execution of the actual lane change
maneuver. It is also capable of ensuring that traffic rules such
as always overtaking on the left are followed.

IV. METHODS AND PROCEDURES

The first step in designing a control algorithm for shock
wave dissipation involves the detection of the presence of a
shock wave condition. The accurate detection of shock wave
conditions require a decent estimate of the traffic conditions
at various locations on the highway.

A. Traffic state estimation

We define the traffic state as the aggregate state over all
lanes and not the state of a single lane. The main desired
components of the traffic state are the density, throughput
and mean velocity of vehicles along the length of the high-
way. Traditionally, data for traffic state estimation had to be
gathered from static, sparsely located infrastructure nodes.
Therefore, unless a large number of sensors were used, the
resulting state estimation would be quite inaccurate. However,
with the presence of Lagrangian sensors in the form of CAVs
interspersed among the HDVs, we can now obtain a far
more accurate depiction of the state of traffic on a highway
link. Here, accuracy is defined as the similarity between the



estimated traffic state and the ground truth value. As expected,
in estimating the traffic state using CAVs, we observe that
the accuracy of state prediction achieved increases with the
number of CAVs present on the highway.

While density and throughput can be computed based on
the number of vehicles in a highway section at each time
instance, it is more difficult to compute the average velocity
of vehicles at a specific point on a highway section. The
estimation methods presented, try to compute the average
vehicle velocity at the CAV’s location on the highway. In
this research we consider two separate methods for highway
state reconstruction. CAVs could gather data based on its own
internal state or based on the cumulative information it gathers
about surrounding vehicles and itself.

1) Estimation based on ego vehicle data: Here, we assume
each CAV maintains a memory of its own past k velocities,
where k is a parameter defining the length of the memory
needed. Then the average velocity estimate V ei (t) at position
si(t) of CAV i is computed by a rolling time average as
follows,

V ei (t) =
1

k + 1

k∑
τ=0

vi(t− τ) (9)

2) Estimation based on surrounding vehicle data: The
average velocity estimate V ei (t) computed in equation (9) may
often not be accurate in the case of a multi-lane highway, since
the lane containing the CAV may be moving slower or faster
than its surrounding lanes. In order to address this issue, we
leverage the advanced sensor suite on-board modern CAVs to
collect data regarding the vehicles surrounding the CAV. The
sensor range and tracked vehicles are discussed in Section
II-B. Let the number of vehicles tracked be m, the maximum
length of memory be k and vij(t) represent the velocity at
time t of the jth vehicle tracked by CAV i. Also let kj ≤ k
be the number of time steps the jth vehicle is tracked. Then
the average velocity estimate V ei (t) at position si(t) of CAV i
is computed by a rolling time average considering all tracked
vehicles as follows,

V ei (t) =
1

m+ 1

m∑
j=0

1

kj + 1

kj∑
τ=0

vij(t− τ) (10)

Here, vi0(t) represents the velocity of the CAV under con-
sideration i, at time t. As data is gathered from multiple lanes,
this method leads to a far more accurate representation of the
average vehicle velocity at any given position and time si(t),
on a multi lane highway. It is important to note that, kj for
every tracked vehicle j will vary depending on how long it
stays within the field of view of CAV i.

B. Shock wave detection

Shock waves are characterized by a sudden change in the
traffic state on a highway. These shock waves propagate either
upstream or downstream on the highway in the form a wave.
The rate at which the shock wave moves Vλ, can be computed

using the Rankine-Hugoniot condition which guarantees the
conservation of mass of traffic flow as follows,

Vλ =
Qc −Qf
ρc − ρf

(11)

Here, density and throughput are given by Qc and ρc for the
congested region at the shock wave, and Qf and ρf for the
free-flow region outside the shock wave. While this parameter
characterizes the shock wave, the actual detection process is
carried out by the evaluation of the estimated traffic state
near each of the CAVs on the highway. In the case where
CAVs do not communicate with each other, shock waves are
detected by comparing the current velocity of the CAV to
its long term average velocity data V ei (t). This method only
enables the CAV to estimate whether or not it is currently
facing a shock wave scenario. This process is vastly improved
when communication among CAVs is considered. A CAV can
compare its own current and temporal average velocity with
the velocities communicated to it from downstream CAVs
within communication range. This allows CAVs to not only
detect the presence of the shock wave in advance, but also the
exact location of the shock wave on the highway. This then
paves the way for the use of proactive control algorithms,
which begin affecting highway conditions upstream of the
actual shock wave location. This is shown to have a strong
impact on the shock wave dissipation process.

The process of shock wave detection and the subsequent
application of a suitable control, is carried out by every CAV
present on the highway. The first step of the algorithm for
shock wave detection using V2V communication involves
gathering local traffic state data, as discussed in Section IV-A,
from all downstream CAVs within communication range Ci of
the ego vehicle i. The ego vehicle then builds up an estimate
of the traffic conditions in front of it and selects the worst case
scenario as shown in equations (12) and (13). We observe that
the best performance is obtained by identifying the worst case
scenario downstream of the CAV and adapting the control to
suit this.

videt(t) = min
j∈Ci

V ej (t) (12)

virel(t) = max{0, vi(t)− videt(t)} (13)

Here, V ej (t) is obtained from either equation (9) or (10)
depending on whether data is collected from surrounding
vehicles. The algorithm also takes note of the position sij(t) of
the vehicle j which corresponds to the worst case minimum
average velocity videt(t) ahead of ego vehicle i. Here, virel(t)
is the relative velocity gap between the ego vehicle and the
worst case velocity downstream of it. When the value of
virel(t) exceeds a tunable threshold value Vsw, a shock wave is
considered detected, and control will then be applied to CAV
i for shock wave dissipation.

C. Control for shock wave dissipation

The control algorithms defined in this section aim to dissi-
pate shock waves as soon as possible with minimal control
effort. While our proposed method focuses on cooperative



control and information sharing, for comparison we also
implement a control algorithm (independent method) for the
case of no cooperation, similar to the method in [4].

The output desired target velocity vid(t) generated for ego
vehicle i will be based on the type of control algorithm used.

1) Independent control method: For the simple case (inde-
pendent method) that does not consider information sharing
among vehicles, vid(t) is computed based on a rolling average
of the velocity of vehicle i as shown in equation (14). Here,
m represents the length of memory used and needs to be set
to a high value (m >> k) to achieve suitable results.

vid(t) =
1

m+ 1

m∑
τ=0

vi(t− τ) (14)

2) Communication based control method: In contrast, for
the cooperative control approach (our method) with V2V in-
formation sharing, when a shock wave is detected downstream,
we set the value of vid(t) based on videt(t) obtained from
equation (12). This allows the ego vehicle i to react in advance
to the shock wave traffic conditions ahead of it. Note that
this control will only be applied until the CAV reaches the
position sij(t), detected as the worst case conditions ahead of
the CAV. However, the CAV can always adapt its control if
traffic conditions worsen ahead of it. The process of setting
the target velocity vid(t) is explained in Algorithm 1.

Additionally, it is important to ensure that safety constraints
are considered when choosing a control for the vehicle.
Therefore, we compute the maximum safe following velocity
of vehicle i denoted by vis(t), using the Krauss car following
model described in Section III-A. This method uses infor-
mation pertaining to the distance gap to lead vehicle ∆s(t)
and the lead vehicle velocity vl(t) which are measured using
the on board sensors of the CAV. Note that the constraints in
equations (4) and (5) also need to be satisfied.

Algorithm 1: Communication based control
Result: Obtain control ui(t)
if virel(T ) > Vsw (Shock wave detected at t = T ) then

detPos = sij(T );
vid(t) = videt(T );
if si(t) < detPos then

if virel(T ′) > virel(T ) (New det. at t = T ′) then
T = T ′;
detPos = sij(T

′);
vid(t) = videt(T

′);
end
Compute vis(t);
ui(t) = max(0,min(vis(t), v

i
d(t));

end
end

V. EXPERIMENTAL SETUP AND RESULTS

The performance of the proposed approach is evaluated on
a circular three lane highway loop simulation, implemented

on the SUMO [12] traffic simulation platform. The simulation
setup for the highway loop is shown in Fig. 3. The controller
communicates with the simulator using the TraCI traffic con-
troller interface. All simulations and control algorithms are
run on a personal computer with an Intel i7-8750H CPU and
32GB of RAM.

Fig. 3: Circular multi-lane highway loop simulation

The length of the circular three lane highway loop simulated
is 1 km long and all tests were carried out with a density of 200
vehicles in the loop. The vehicles used were a mix of CAVs
and HDVs at varying proportions (CAV penetration levels).

A. Parameters for shock wave generation

Two simulation parameters play a major role in simulating
realistic driving behavior which results in the natural forma-
tion of shock waves. Sigma is a parameter that allows the
specification of driver imperfection and is set to its maximum
value of 1. The parameter actionStepLength which handles
the reaction time involved in the decision making process of
HDVs is set to 1sec. These parameters lead to natural traffic
shock wave formation over time, similar to that observed in
human driving data.

B. Proposed method performance

In this section, we discuss the performance achieved by
the proposed V2V communication-based method (our method)
which allows cooperative information sharing among CAVs
to achieve better shock wave dissipation performance. The
presence of continuing shock waves is evident in the case
in which no control was applied as seen in Fig. 4a and Fig.
5a. While the vehicle trajectories showcase repeating shock
waves, from the velocity curves we observe that the majority
of vehicles constantly switch between higher velocities and
very low velocities which is characteristic of a traffic shock
wave.

Note that while the experiment contains 200 vehicles, Fig.
4 and Fig. 5 plot only the information of 50 vehicles (6 CAVs
and 44 HDVs). This results in clearer less cluttered graphs
which showcase information representative of the traffic state
in the overall simulation. In these experiments, the CAV



(a) No control applied

(b) Proposed method control

Fig. 4: Variation in trajectories of vehicles

penetration level is set as 7.5%. Furthermore, control is applied
to CAVs starting at time t = 100s in all experiments.

In Fig. 4b, based on vehicle trajectories, we observe that
the shock wave is fully dissipated within 2 minutes of acti-
vating the control strategy. From Fig. 5b, we observe that the
velocities of all vehicles converge to a common average value
and note that this average value gradually increases with time.
Additionally, as safety was a critical component built into all
control algorithms used, no collisions were observed in any of
the experiments.

Remark 1: In Fig. 4, trajectories of individual vehicles
occasionally cross one another. Due to the fact that we
simulate a multi-lane highway system, it is understood that
these intersections represent a vehicle being overtaken by
vehicles in other lanes.

C. Comparison between methods

The shock wave dissipation performance of our method
is compared to two other methods. We use a baseline case
(baseline method), which does not apply any shock wave
dissipation control to the CAVs. We also implement a method
(independent method) which applies a control similar to that
used in [4], to each CAV on the highway independently. In the
independent method, vehicles do not communicate and control
is computed based on equation (14).

The main performance indicator in evaluating different
control schemes for shock wave dissipation is the variation in
the velocities of the vehicles involved. A good control scheme

(a) No control applied

(b) Proposed method control

Fig. 5: Variation in velocities of vehicles

should be able to reduce this variation within a short time-span
without affecting the overall system throughput. The change
in the standard deviation in vehicle velocities for the different
methods is shown in Fig. 6. We observe that the proposed V2V
communication based method results in a 40% lower standard
deviation in velocity than the independent control method.

Fig. 6: Velocity Standard Deviation for different methods

In Fig. 7, we observe a greater reduction in the average
velocity of vehicles when control is activated in the proposed
method. This highlights how fast the proposed algorithm
begins to clear up the shock wave when compared to other
methods. The reduction in average velocity is due to vehicles
in the zones outside the shock wave being preemptively slowed
down in anticipation of downstream shock wave conditions.
We see that by the 10 minute (600sec) mark all methods reach



an average velocity close to 6m/s, but the standard deviation
in these velocities is drastically lower in the proposed method.

Fig. 7: Average velocity comparison for different methods

Remark 2: It is important to note that the performance of
the independent method is quite dependent on the circular
ring highway structure. This is due to each vehicle needing
to collect adequate information about shock wave conditions
before control can be applied. The proposed method does
not have this limitation and is therefore independent of the
highway structure.

D. Impact of CAV penetration levels

In this section, we explore the impact of different CAV
penetration levels on the performance of the proposed method.
In Fig. 8, we see that very low penetration levels like 1%
and 2% have a minimal impact on shock wave mitigation.
This is mainly due to the fact that in a multi-lane highway,
other vehicles will simply overtake the few CAVs attempting
to apply control. As the number of lanes increases, the
penetration level needed for good performance also increases.
For our experiments in a 3 lane highway, we observe that
around 7.5% or higher CAV penetration leads to effective
shock wave dissipation in a timely manner. However, even
at lower penetration levels there is still a positive impact in
overall shock wave dissipation, even though full dissipation
will require a longer duration of time.

Fig. 8: Velocity std. dev. for varying CAV penetration levels

VI. CONCLUSION

We propose a traffic shock wave dissipation method for
multi-lane highways, involving V2V communication-based
cooperative control of CAVs. The performance of this method
is evaluated using the SUMO platform and we demonstrate
that this method is capable of proactively mitigating shock
wave formation faster and more effectively than other methods.
We find that when using this method, even very low CAV
penetration levels have a strong positive effect on shock wave
dissipation. Future work in this area could involve collabora-
tive decision making among CAVs, improved state estimation
based on information sharing and exploration of learning based
approaches to control for shock wave mitigation.
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