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Abstract

The advent and proliferation of the use of Unmanned Aerial Vehicles (UAV’s)
poses new challenges to swarm robotics and air defense systems. In this
work we consider the problem of defending against adversarial attacks from
UAV swarms performing complex maneuvers, driven by multiple, dynami-
cally changing, leaders. We rely on short-time observations of the trajecto-
ries of the UAVs and develop a leader detection scheme based on the notion
of Granger causality. We proceed with the estimation of the swarm’s coordi-
nation laws, modeled by a generalized Cucker-Smale model with non-local
repulsive potential functions and dynamically changing leaders, through an
appropriately defined iterative optimization algorithm. Similar problems ex-
ist in communication and computer networks, as well as social networks
over the Internet. Thus, the methodology and algorithms proposed can be
applied to many types of network swarms including detection of influen-
tial malevolent “sources” of attacks and “miss-information”. The proposed
algorithms are robust to missing data and noise.

Introduction and Problem Definition

While modern high-precision targeting anti-air defenses are capable of tak-
ing down a single UAV, when it comes to a large swarm of UAV’s attacking
simultaneously, these defences can be rendered ineffective. These problems
are even more challenging when in UAV swarms, a few units are managed
by humans (we refer to them as “leaders”, while most units “follow”, lead-
ing to very effective management of large swarms. When the role of leaders
can be dynamically re-assigned the monitoring and defense against such
swarms becomes even more difficult.

The first question that needs to be addressed in creating a defense against
a hostile UAV swarm is understanding the control (coordination) and com-
munication laws governing how the drones move and interact with each
other. We view the interconnected problems of modeling and learning the
interaction laws of a swarm as one problem that can be analyzed in the mi-
croscopic scale as a port-Hamiltonian networked system. We extend exist-
ing simulation models, such as the Boids and the Cucker-Smale models, to
incorporate interaction, communication and dynamics terms that can capture
realistic complex swarm maneuvers and develop corresponding simulation
models in the macroscopic domain [8, 10]. Consider an interacting system
of N particles and the leader sets L(i), 1 ≤ i ≤ N of cardinality |L(i)| = 1
assigned to each particle representing the index of the leader particle that it
is following. We introduce

I. a scalable simulation algorithm, based on the Boids model [11], that
can capture interaction laws and communication protocols of com-
plex swarm maneuvers, including (a) velocity alignment, (b) spatial
cohesion, (c) collision avoidance, and (d) response to dynamically
changing leaders:{

ẋi = vi

v̇i =−c∇Uc(x)−a∇Ua(x,v)+ s∇Us(x)
(1)

II. a large-scale learning algorithm, based on the generalized Cucker-
Smale model [1] and automatic differentiation, designed to work on
state-of-the-art deep learning platforms that can identify the inter-
action laws (a)-(d) by observing particle trajectories of position and
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Figure 1: Reconstructing complex swarm dynamics. The agents’ trajecto-
ries are observed and used to detect leaders and identify a port-Hamiltonian
networked system modeling their interaction rules [8].

velocity: {
ẋi = vi

v̇i = K
N ∑

N
j=1 ψi j(x(t),v(t))

(2)

where

ψi j(x) =

{
−∇U(‖xi− x j‖), j /∈ L(i), j 6= i
G(‖xi− x j‖)(v j(t)− vi(t))−∇U(‖xi− x j‖), j ∈ L(i)

(3)
It can be shown that the Cucker-Smale model with leadership is equivalent
to a fully connected N-dimensional network of generalized mass-spring-
dampers with appropriately defined Hamiltonian functions, that can be writ-
ten in an input-state-output port-Hamiltonian form [5, 9]:

ż = [J(z)−R(z)]
∂H(z)

∂z
+g(z)u, (4)

where z = (q, p), with q, p ∈ R
N(N−1)

2 being the vectors of relative distances
and momenta between each pair of particles, and the quantities J =−JT, H,
R and g(z) are appropriately defined, and u is an external control input that
affects only the leader particles and is responsible for their trajectories.

Methodology

For leader detection, we adopt a majority vote criterion, where each particle
i votes for the particle j to be the leader, according to a measure related to
the observed trajectories of the particles. In particular, we each vote wit the
existence of a causal effect of the trajectory of particle j, Y , on the trajectory
of particle j, X . The causal relationship is determined by a hypothesis test
designed according to Granger’s definition of causality [2] which is based
on two principles:

i. The cause happens prior to its effect
ii. The cause has unique information about the future values of its effect.

Given these assumptions, we say that a time series Y Granger-causes X if
the past values of Y provide statistically significant information about the
future values of X.

The first question one needs to answer when dealing with leader de-
tection, however, is the number of leaders that the algorithm is trying to
find. We view this problem as a clustering problem given a window of po-
sition and velocity observations of the particles, since it is reasonable to
assume that particle trajectories will be more ‘similar’ to each other if they
are following the same leader. However, the number of the clusters is not
known a priori, which makes standard clustering algorithms inadequate for
this application [7]. Instead, we need an unsupervised learning algorithm
that progressively estimates the number of clusters by adding new clusters
only when some measure of distortion is high enough to support this deci-
sion. In this regard, we use the Online Deterministic Annealing algorithm
[6] as a fitting clustering algorithm for estimating the number of leaders.

For the learning task we model the networked system of interacting
agents as a port-Hamiltonian system (4). We make use of the position



and velocity trajectories of the particles to recover the resistive terms R(z)
and the Hamiltonian H(z), which is equivalent to recovering the interaction
functions ψi j(x,v) of a general Cucker-Smale model (2). The components
of the interaction model (resistive element and the spring Hamiltonian) are
modeled as neural-networks with one hidden layer, and the following opti-
mization problem with a mean square error (MSE) loss function is formu-
lated

minw
1
n ∑

n
i=1 ‖ż(ti)− ˙̂z(ti;w)‖2 (5)

s.t. ż(ti) = [J(z(ti))−R(z(ti))] ∂H(z(ti))
∂z +g(z)u (6)

˙̂z(ti;w) =
[
J(z(ti))− R̂(z(ti;w))

]
∂ Ĥ(z(ti;w))

∂z +g(z)u, (7)

where n is the number of time samples, w = {W [0],b[0],W [1],b[1]} is the set
of optimization variables, and (·̂) represents quantities estimated by the neu-
ral networks. We approach the solution w∗ of (5) with respect to Vp(θ) :=
∑

t f
τ=t0 ‖ż

∗(τ)− ż(τ)‖2 with an iterative gradient descent method

θ
n+1 = θ

n−αn(∇θVp(θ
n)), n = 0,1,2, . . . (8)

where the iteration maps αn : R2 → R2, n≥ 0 are defined in accordance
with the Adam method of moments for stochastic optimization [3], and the
computation of the gradient vectors is implemented using automatic differ-
entiation [4].

Experimental Results and Future Directions

We showcase the proposed algorithm in the complex swarm movements
shown in Fig. 2 and 3, where the trajectories of the particles are generated
by the Cucker-Smale and extended Boids models with one leader, respec-
tively. The decoding results are detailed in [8] and show successful leader
detection and reconstruction of the coordination laws of the UAV swarm.

Figure 2: An example of 2D particle trajectories of a swarm following the
dynamics of a Cucker-Smale model with one leader.

Figure 3: An example of 2D particle trajectories of a swarm following the
dynamics of an extended Boids model with one leader.

In the case of two leaders, we consider the complex swarm movement
shown in the Fig. 4. In order to apply our port-Hamiltonian based learning
algorithm, we first estimate the sets L(i), 1 ≤ i ≤ N with the leader de-
tection described above. The number of leaders was successfully detected,
as well as the leaders themselves, even though there is an intersection be-
tween the trajectories. The interaction function is reconstructed with a mean
squared error of MSE = 0.193657 [8].

Figure 4: An example of 2D particle trajectories of a swarm following the
dynamics of a Cucker-Smale model with two leaders.

While the key focus of this work is related to the defense against hos-
tile UAV swarms, similar problems are found in many other types of large
networked systems, including communication and computer networks, sen-
sor networks, networked cyber-physical systems, biological systems, and
social networks over the Internet. In such systems there are corresponding
notions of leaders, such as initiators of a malicious attack, coordinators of
malevolent behavior, initiators of a biological cell-malfunction, or influen-
tial sources of miss-information or untrustworthiness. In all these problems
fast identification of the leaders and the associated follower groups (or in-
fluence groups) is essential for defending and correcting such malevolent
actions and functions. Thus the applicability of the ideas and methods pro-
posed in this work is very broad, with the appropriate modeling and seman-
tic changes for the various domains. Important directions of our current and
future research include extensions of the framework and algorithms to these
broader domains, as well as the utilization of game theoretic methods for
their analysis (non-cooperating, cooperating and mean-field games).
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