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Abstract

While reinforcement learning algorithms based on parametric models can
deal with the curse of dimensionality, convergence properties can be difficult
to establish and their performance in practice heavily depends on the choice
of the basis functions. We propose a reinforcement learning algorithm based
on an adaptive aggregation scheme defined by a progressively growing set of
codevectors placed in the joint state-action space according to a maximum-
entropy vector quantization scheme. The proposed algorithm can be used
for robot control and constitutes a two-timescale stochastic approximation
algorithm with: (a) a fast component that executes a temporal-difference
learning algorithm, and (b) a slow component, based on an online determin-
istic annealing algorithm, that adaptively partitions the state-action space
according to a dissimilarity measure that belongs to the family of Bregman
divergences. The proposed online deterministic annealing algorithm con-
stitutes a competitive-learning neural network that shows robustness with
respect to the initial conditions, requires minimal hyper-parameter tuning,
and provides online control over the performance-complexity trade-off.

Introduction and Problem Definition

Reinforcement learning algorithms are being extensively studied, not only
due to their effectiveness in numerous applications [5], but also due to their
promise to solve difficult optimal control problems in an online and data-
driven fashion. Consider a discrete-time MDP (X,U,P,C) with:

• X being the state space,
• U being the action (control) space,
• P : (x,u,x′) 7→ P [x′|x,u] being the transition probabilities associated

with a stochastic state transition function f : (x,u) 7→ x′, and
• C : X×U→ R+, being the immediate cost function, assumed deter-

ministic.
Reinforcement Learning (RL) examines the problem of learning a control
policy u := (u0,u1, . . .) that solves the discounted infinite-horizon optimal
control problem

V ∗(xk) : = min
u

E

[
∞

∑
l=k

γ
l−kC(xl ,ul)

]
(HJB)
= min

u
{C(xk,uk)+ γE [V ∗(xk+1) | xk] }

= min
uk

Q∗(xk,uk)

(1)

where γ ∈ (0,1], V ∗ :=V u∗ and Q∗ :=Qu∗ represent the optimal value and Q
functions, respectively. Reinforcement learning algorithms consist mainly
of temporal-difference learning algorithms that try to approximate a solution
to (1) using iterative optimization methods. The optimization is performed
over a finite set of parameters which are used to describe the value (or Q)
function. These parameters typically correspond to a parametric model (e.g.
a neural network) used for function approximation, or to the different values
of the vector V (X) (or Q(X,U)), in which case X and U are assumed finite
either by definition or as a result of discretization. When X and U are finite,
a widely used approach is the Q-learning algorithm:

Q j+1(x,u′) = Q j(x,u′)+α j[C(x,u′)+ γ min
u

Q j(x′,u)−Q j(x,u′)]
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Figure 1: Inverted pendulum configuration to be controlled ([2]).

that provably asymptotically minimizes the mean-squared Bellman error.
While reinforcement learning algorithms based on parametric models can
deal with the dimensionality issues, convergence properties can be difficult
to establish, and their performance in practice heavily depends on the choice
of the basis functions [3]. As a middle point between the two approaches,
state aggregation has been proposed as a quantization scheme for large or in-
finite spaces [1, 8], and can be viewed as a special case of linear models with
the basis functions being indicator functions of a partition of the state/action
space [11]. Although this simplicity of the feature space is often desirable,
crude approximation can decrease the overall performance of the algorithm,
while state aggregation schemes are typically fixed and ad-hoc [4], which
results to a sub-optimal representation of the space.

Methodology and Results

We propose an adaptive state/action aggregation algorithm, based on the
results of [8], that updates the space partition with a vector quantization al-
gorithm [7] while implementing a version of Q-learning in the discretized
space. This leads to a better representation of the state/action space com-
pared to naive discretization, and with fewer number of discrete states. We
consider an MDP (X,U,P,C), where S⊆RdX , S⊆RdU are compact convex
sets. We are interested in the approximation of the quality function Q : X×
U→ R+. To this end, we define a quantizer QP(x,u) = ∑

K
h=1 µh1[(x,u)∈Ph],

where {Ph}K
h=1 is a partition of X×U. The parameters µh := (mh,vh)

define a state-action aggregation scheme with k clusters (aggregate state-
action pairs), each represented by mh ∈ X and vh ∈ U, for h = 1, . . . ,K. We
use the online deterministic annealing (ODA) algorithm (Alg. 1) as an on-
line greedy algorithm that finds an optimal representation of the data space
with respect to a trade-off between minimum average distortion and maxi-
mum entropy. The online deterministic annealing algorithm is a prototype-
based clustering algorithm that is robust with respect to the initial conditions
[6], and provides a means to progressively adjust the number of clusters
used, via an intuitive bifurcation phenomenon that controls the performance-
complexity trade-off created by the interplay of minimum-distortion and
maximum-entropy. After convergence, if the representation is meaningful,
the finite set {µh}K

h=1, where µh ∈X×U, can be used directly for piece-wise
constant approximation of the Q function. We stress that the cardinality K of
the set of representatives of the space X×U is automatically chosen by Alg.
1 and progressively increases, as needed, with respect to the complexity-
accuracy trade-off presented above.

In essence, we are approximating the Q function with a piece-wise con-
stant parametric model with the parameters that define the partition living in
the data space and being chosen by the vector quantization algorithm 1. We
can design a reinforcement learning algorithm as a two-timescale stochastic
approximation algorithm with (a) a fast component that updates the val-
ues Q := {Q(h)}K

h=1 with a temporal-difference learning algorithm, and (b)
a slow component that updates the representation µ := {µh}K

h=1 based on
Alg. 1. Such a framework can incorporate different reinforcement learning



algorithms, including the proposed algorithm presented in Alg. 2.
In Fig. 2 we compare the average number of timesteps (here Nt = 1000)

with respect to the number of aggregate states used, for three different state
aggregation algorithms. The first one is naive discretization without state
aggregation, the second is the SOM-based algorithm proposed in [8], and
the last is the proposed algorithm Alg. 2. We initialize the codevectors µ

by uniformly discretizing over Ŝ×{−10,10}, for Ŝ = [−1,1]× [−4,4]×
[−1,1]× [−4,4]. We use K ∈ {16,81,256,625} clusters, corresponding to
a standard discretization scheme with only n ∈ {2,3,4,5} bins for each di-
mension. As expected, state aggregation outperforms standard discretiza-
tion of the state-action space. The ability to progressively adapt the number
and placement of the centroids of the aggregate states is an important prop-
erty of the proposed algorithm, 5 instances of which are presented in Fig.
2 for different parameters Tmin, which result to K ∈ {56,118,136,202,252}
aggregate states. As shown, the behavior of Alg. 2 depends on the tempera-
ture schedule T , as well as on hyperparameters such as the the profile of the
stepsizes αi and βi.

Figure 2: Average number of timesteps (Nt = 1000) over number of aggre-
gate states used. (red) the proposed algorithm. (black) Q-learning without
state aggregation. (blue) the SOM-based algorithm of [8].

Future Directions

It is natural to seek smoother approximations, that can incorporate the pro-
gressively growing nature of the online deterministic annealing algorithm.
To this end, Gaussian processes offer a useful candidate, as they constitute
non-parametric regressors that allow for the quantification of the uncertainty
of the model in each region of the space [9]. However, Gaussian processes

Algorithm 1 State-Action Aggregation Algorithm (ODA)

Select parameters and initial configuration {µi}
while K < Kmax and T > Tmin do

Perturb µ i←{µi +δ ,µi−δ}, ∀i
Set n← 0
repeat

Observe state x
for i = 1, . . . ,K do

Update:

p(µi|x)←
p(µi)e−

dφ (x,µi)
T

∑i p(µi)e−
dφ (x,µi)

T

p(µi)← p(µi)+βn [p(µi|x)− p(µi)]

σ(µi)← σ(µi)+βn [xp(µi|x)−σ(µi)]

µi←
σ(µi)

p(µi)

n← n+1
end for

until Convergence
Keep effective codevectors
Lower temperature T ← γT

end while

Algorithm 2 Reinforcement Learning Algorithm with ODA

Initialize µh, Q0(h), ∀h ∈ {1, . . . ,K}
repeat

Observe x and find h = argmin
τ=1,...,k

dφ ((x,u′),µτ )

Choose u′ = πL(h|µ)
Observe x′ = f (x,u′) and find h′ = argmin

τ=1,...,k
dφ (x′,µ(τ))

Update Q(h):

Qi+1(h) = Qi(h)+αi[C(x,u′)+ γ min
u

Qi(h′)−Qi(h)]

if i mod N = 0 then
Update partition µ := {µh}K

h=1 using Alg. 1
end if

until Convergence
Update Policy: u∗(x) = argminu { Q(h(x)) }

are not useful for applications with large datasets, since the time complexity
for training is O(n3), where n is the number of known data points. This also
rules out the straightforward use of Gaussian processes in an online fash-
ion. The prediction can be conditioned on just a subset of points, which
is, however, typically learned by solving a large optimization problem over
the entire dataset [10]. It is possible to use of the codevectors generated by
the online deterministic annealing algorithm (Alg. 1) as a training set for
Gaussian process regression, which, in turn, can be used in the proposed
framework for reinforcement learning robot control.
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