Reinforcement Learning Robot Control with Progressive State Aggregation

Christos N. Mavridis, Nilesh Suriyarachchi, and John S. Baras

Department of Electrical and Computer Engineering and the Institute for Systems Research, University of Maryland, College Park, USA.

Abstract

While reinforcement learning algorithms based on parametric models can
deal with the curse of dimensionality, convergence properties can be difficult
to establish and their performance in practice heavily depends on the choice
of the basis functions. We propose a reinforcement learning algorithm based
on an adaptive aggregation scheme defined by a progressively growing set of
codevectors placed in the joint state-action space according to a maximum-
entropy vector quantization scheme. The proposed algorithm can be used
for robot control and constitutes a two-timescale stochastic approximation
algorithm with: (a) a fast component that executes a temporal-difference
learning algorithm, and (b) a slow component, based on an online determin-
istic annealing algorithm, that adaptively partitions the state-action space
according to a dissimilarity measure that belongs to the family of Bregman
divergences. The proposed online deterministic annealing algorithm con-
stitutes a competitive-learning neural network that shows robustness with
respect to the initial conditions, requires minimal hyper-parameter tuning,
and provides online control over the performance-complexity trade-off.

Introduction and Problem Definition

Reinforcement learning algorithms are being extensively studied, not only
due to their effectiveness in numerous applications [5], but also due to their
promise to solve difficult optimal control problems in an online and data-
driven fashion. Consider a discrete-time MDP (X, U, P,C) with:

¢ X being the state space,
¢ U being the action (control) space,
e P:(x,u,x’) — P[¥|x,u] being the transition probabilities associated
with a stochastic state transition function f: (x,u) — x/, and
e C:X xU— Ry, being the immediate cost function, assumed deter-
ministic.
Reinforcement Learning (RL) examines the problem of learning a control
policy u := (ug,uq,...) that solves the discounted infinite-horizon optimal
control problem

=)

V*(xk) = mL}n E |: )/kC(xl,ul):|
I=k

(¢Y)

(HIB) min { C(xe, ) + YRV (1) [ ] }

=min Q" (xg, ug)
Uk

where y € (0,1], V*:= V¥ and Q* := Q" represent the optimal value and Q
functions, respectively. Reinforcement learning algorithms consist mainly
of temporal-difference learning algorithms that try to approximate a solution
to (1) using iterative optimization methods. The optimization is performed
over a finite set of parameters which are used to describe the value (or Q)
function. These parameters typically correspond to a parametric model (e.g.
a neural network) used for function approximation, or to the different values
of the vector V(X) (or Q(X,U)), in which case X and U are assumed finite
either by definition or as a result of discretization. When X and U are finite,
a widely used approach is the Q-learning algorithm:

Qj+1 (X, u,) = Qj(x7 u/) + Otj[C(x., u/) + J/mMian(x/,u) - Qj(x7 u/)]

Extended abstract submitted to the Maryland Robotics Center (MRC) Research Sympo-
sium 2021. Research partially supported by the Defense Advanced Research Projects Agency
(DARPA) under Agreement No. HR00111990027, by ONR grant NO0OO14- 17-1-2622, and by a
grant from Northrop Grumman Corporation. Authors’ e-mails: {mavridis, nileshs,
baras}@umd.edu.

—

Figure 1: Inverted pendulum configuration to be controlled ([2]).

that provably asymptotically minimizes the mean-squared Bellman error.
While reinforcement learning algorithms based on parametric models can
deal with the dimensionality issues, convergence properties can be difficult
to establish, and their performance in practice heavily depends on the choice
of the basis functions [3]. As a middle point between the two approaches,
state aggregation has been proposed as a quantization scheme for large or in-
finite spaces [1, 8], and can be viewed as a special case of linear models with
the basis functions being indicator functions of a partition of the state/action
space [11]. Although this simplicity of the feature space is often desirable,
crude approximation can decrease the overall performance of the algorithm,
while state aggregation schemes are typically fixed and ad-hoc [4], which
results to a sub-optimal representation of the space.

Methodology and Results

We propose an adaptive state/action aggregation algorithm, based on the
results of [8], that updates the space partition with a vector quantization al-
gorithm [7] while implementing a version of Q-learning in the discretized
space. This leads to a better representation of the state/action space com-
pared to naive discretization, and with fewer number of discrete states. We
consider an MDP (X, U, P,C), where S C R% S C R are compact convex
sets. We are interested in the approximation of the quality function Q : X x
U — R4 To this end, we define a quantizer Qp(x,u) = YK _, JI7% NTTAR
where {Ph}hK:l is a partition of X x U. The parameters Uy := (my,vy)
define a state-action aggregation scheme with k clusters (aggregate state-
action pairs), each represented by mj, € X and v, € U, forh=1,...,K. We
use the online deterministic annealing (ODA) algorithm (Alg. 1) as an on-
line greedy algorithm that finds an optimal representation of the data space
with respect to a trade-off between minimum average distortion and maxi-
mum entropy. The online deterministic annealing algorithm is a prototype-
based clustering algorithm that is robust with respect to the initial conditions
[6], and provides a means to progressively adjust the number of clusters
used, via an intuitive bifurcation phenomenon that controls the performance-
complexity trade-off created by the interplay of minimum-distortion and
maximum-entropy. After convergence, if the representation is meaningful,
the finite set {11, }~_,, where w, € X x U, can be used directly for piece-wise
constant approximation of the Q function. We stress that the cardinality K of
the set of representatives of the space X x U is automatically chosen by Alg.
1 and progressively increases, as needed, with respect to the complexity-
accuracy trade-off presented above.

In essence, we are approximating the Q function with a piece-wise con-
stant parametric model with the parameters that define the partition living in
the data space and being chosen by the vector quantization algorithm 1. We
can design a reinforcement learning algorithm as a two-timescale stochastic
approximation algorithm with (a) a fast component that updates the val-
ues Q := {Q(h)}X_, with a temporal-difference learning algorithm, and (b)
a slow component that updates the representation p := {yy, }le based on
Alg. 1. Such a framework can incorporate different reinforcement learning



algorithms, including the proposed algorithm presented in Alg. 2.

In Fig. 2 we compare the average number of timesteps (here N; = 1000)
with respect to the number of aggregate states used, for three different state
aggregation algorithms. The first one is naive discretization without state
aggregation, the second is the SOM-based algorithm proposed in [8], and
the last is the proposed algorithm Alg. 2. We initialize the codevectors u
by uniformly discretizing over § x {—10,10}, for § = [—1,1] x [—4,4] x
[—1,1] x [—4,4]. We use K € {16,81,256,625} clusters, corresponding to
a standard discretization scheme with only n € {2,3,4,5} bins for each di-
mension. As expected, state aggregation outperforms standard discretiza-
tion of the state-action space. The ability to progressively adapt the number
and placement of the centroids of the aggregate states is an important prop-
erty of the proposed algorithm, 5 instances of which are presented in Fig.
2 for different parameters 7T, which result to K € {56,118,136,202,252}
aggregate states. As shown, the behavior of Alg. 2 depends on the tempera-
ture schedule 7', as well as on hyperparameters such as the the profile of the
stepsizes ¢ and f3;.

1000
=m= None *
800, == SOM I(
=¢= ODA /
600 /

400 II /‘

200

Average number of timesteps

1.25 150 175 200 225 250

Number of aggregate states (/ogi10)

2.75

Figure 2: Average number of timesteps (V; = 1000) over number of aggre-
gate states used. (red) the proposed algorithm. (black) Q-learning without
state aggregation. (blue) the SOM-based algorithm of [8].

Future Directions

It is natural to seek smoother approximations, that can incorporate the pro-
gressively growing nature of the online deterministic annealing algorithm.
To this end, Gaussian processes offer a useful candidate, as they constitute
non-parametric regressors that allow for the quantification of the uncertainty
of the model in each region of the space [9]. However, Gaussian processes

Algorithm 1 State-Action Aggregation Algorithm (ODA)

Select parameters and initial configuration {; }
while K < K”W and T > T,,;, do
Perturb u' < {p; +0,1; — 8}, Vi
Setn+0
repeat
Observe state x
fori=1,...,Kdo
Update: ) e
pHi)e T
A _ dg (ony)
Yip(Wi)e T
p(1i) <= p(ti) + P [p(kilx) — p(i)]
o (i) < o (W) + B [xp(1ilx) — o ()]
o (1)
p(ui)

p(uilx)

Mi

n<n+1
end for
until Convergence
Keep effective codevectors
Lower temperature 7' <— yT
end while

Algorithm 2 Reinforcement Learning Algorithm with ODA

Initialize wy,, Qo(h), Vhe {1,...,K}
repeat

Observe x and find & = argmin dg ((x,u’), lz)
7=1,....k

Choose u' = 7 (h|w)

Observe x' = f(x,u’) and find b’ = argmin dy (x', u(7))
T=1,....k
Update Q(h):

Qiy1(h) = Qi(h) + o4[Cx,u’) + ymin Qi(h') — Qi(h)]

ifi mod N =0 then
Update partition pt := {/Jh}thl using Alg. 1
end if
until Convergence
Update Policy: u*(x) = argmin, { Q(h(x)) }

are not useful for applications with large datasets, since the time complexity
for training is O(n®), where n is the number of known data points. This also
rules out the straightforward use of Gaussian processes in an online fash-
ion. The prediction can be conditioned on just a subset of points, which
is, however, typically learned by solving a large optimization problem over
the entire dataset [10]. It is possible to use of the codevectors generated by
the online deterministic annealing algorithm (Alg. 1) as a training set for
Gaussian process regression, which, in turn, can be used in the proposed
framework for reinforcement learning robot control.

References

[1] JS Baras and VS Borkar. A learning algorithm for markov decision
processes with adaptive state aggregation. In Proceedings of the 39th
IEEE Conference on Decision and Control (Cat. No. 00CH37187),
volume 4, pages 3351-3356. IEEE, 2000.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neu-
ronlike adaptive elements that can solve difficult learning control prob-
lems. IEEE transactions on systems, man, and cybernetics, pages 834—
846, 1983.

Christoph Dann, Gerhard Neumann, Jan Peters, et al. Policy evalua-
tion with temporal differences: A survey and comparison. Journal of
Machine Learning Research, 15:809-883, 2014.

Abraham George, Warren B Powell, and Sanjeev R Kulkarni. Value
function approximation using multiple aggregation for multiattribute
resource management. Journal of Machine Learning Research, 2008.

(2]

(3]

(4]

[5] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint

arXiv:1509.02971, 2015.

Christos Mavridis and John Baras. Online deterministic annealing for
classification and clustering, 2021.

(6]
[7] Christos N Mavridis and John S Baras. Convergence of stochastic
vector quantization and learning vector quantization with bregman di-
vergences. In 21rst IFAC World Congress. IFAC, 2020.

Christos N Mavridis and John S Baras. Vector quantization for adap-
tive state aggregation in reinforcement learning. In 2021 American
Control Conference (ACC). IEEE, 2021.

Carl Edward Rasmussen. Gaussian processes in machine learning. In
Summer school on machine learning, pages 63—71. Springer, 2003.

(8]

(9]
[10] Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes
using pseudo-inputs. Advances in neural information processing sys-
tems, 18:1257-1264, 2005.

John N Tsitsiklis and Benjamin Van Roy. Feature-based methods for
large scale dynamic programming. Machine Learning, 22, 1996.

(1]



