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Abstract: Pose tracking for outdoor rovers is generally a complex task which is further complicated in conditions where a
Global Positioning System (GPS) signal is denied such as in planetary exploration, underground mines and covered areas.
In these conditions the rover’s pose needs to be calculated purely based on the rover’s current environment observations.
However, conventional wheel odometry is not reliable on rough terrain where wheels are prone to slip and the wheels
do not have a common plane of motion due to suspension systems. This paper proposes a Fast State Variable Extension
(Fast-SVE) method in which 2D state variables (x, y, yaw) are extended to the full 3D state (x, y, z, roll, pitch, yaw)
to achieve effective real time 3D pose tracking of the rover. A particle filter implementation incorporating the Fast-SVE
method is used to track the 3D pose of the rover with roll and pitch values used for weighting. An Enhanced Motion
Model (EMM) is also proposed to further improve the accuracy of 2D pose prediction in the particle filter.
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1. INTRODUCTION

Pose tracking methods for terrain rovers are com-
monly based on GPS. However, in GPS denied situations
such as in underground mines, under a forest canopy or
in planetary exploration a different solution is needed for
position tracking. In these type of situations the most fre-
quently used tracking methods are based on the conven-
tional odometry method [1]. The problem with this tech-
nique is that on rough terrain the rover’s wheels tend to
slip creating high accumulated wheel encoder errors. In
addition to this issue most outdoor rovers have indepen-
dent suspension for each wheel, which causes difficulty
in predicting along what plane the rover chassis has actu-
ally moved.

The use of laser depth sensors allows us to obtain
knowledge of the rover’s terrain in the form of 3D point
clouds. In the case of outdoor rovers a definite relation-
ship exists between the terrain and the rover’s position
and orientation. This relationship is based on the fact that
at a specific 2D pose (x, y, yaw) of the rover, in order for
the rover to be in contact with the terrain, there is only one
possible 3D pose (x, y, z, roll, pitch, yaw). Using this
relationship a State Variable Extension (SVE) method [2]
has been proposed in which 2D state variables are ex-
tended to the full 3D state using terrain knowledge. A
particle filter based tracking system can be implemented
incorporating the SVE method to obtain the 3D pose of
the rover. However, particle filter based high accuracy
pose tracking involves the maintainence of an adequately
high particle count as well as a reasonably high filter up-
date frequency. As the SVE based particle filter track-
ing process is quite computationally expensive, effective
real time 3D tracking becomes very difficult. This pa-
per proposes a Fast State Variable Extension (Fast-SVE)
method which contains a more computationally efficient

SVE process which enables high accuracy real time 3D
pose tracking.

In order to perform SVE the 2D state of the rover needs
to be predicted. This is usually carried out using conven-
tional odometry tracking which uses both IMU measure-
ments and wheel encoder readings. However, both these
readings tend to be inaccurate over time due to accumu-
lation of errors by wheel slippage and IMU drift. The
paper introduces an Enhanced Motion Model (EMM) in
order to improve 2D pose prediction of the rover. The
EMM process implements improvements to the standard
motion model [3] in order to counter these increasing er-
rors. Initially the clustering of particles is increased by
biasing low weight particles in the direction of the best
pose of the previous particle filter iteration. A Gaussian
kernal is also added to the predicted 2D pose of each par-
ticle. Furthermore, the EMM process selectively repur-
poses a portion of the lowest weight particles in order to
track and correct wheel slippage using a Gaussian ker-
nal centered around the best pose of the previous filter
iteration. These improvements lead to improved tracking
in low friction environments as well as the reduction of
the total number of particles required in the particle filter.
Together the proposed Fast-SVE method and the EMM
provides highly efficient and accurate real time 3D pose
tracking of an outdoor rover in GPS denied conditions.

2. RELATED WORKS

The work closest to this research is the work by
Jayasekara et al. [2]. It presents the original SVE method.
However, it is quite computationally expensive and strug-
gles at performing real time 3D pose tracking with a suf-
ficient number of particles for high accuracy tracking.
This paper will look into improving the SVE method to
be more computationally efficient thus enabling effective
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real time pose tracking. Accuracy of the 3D pose track-
ing process will also be improved upon with the use of
the EMM for 2D pose prediction.

The paper by Suzuki et al. [4] presents an outdoor
localization method for a mobile robot using a laser scan-
ner and a 3D voxel map based on point clouds. This is
applicable only if the four wheels of a rover stay on one
plane which rarely occurs in terrain rovers as indepen-
dent wheel suspension systems allow wheels to be mov-
ing in different planes. Methods used to detect and com-
pensate for wheel slippage using visual odometry [5] [6]
have been documented. However, due to the fact that vi-
sual odometry requires specific conditions such as good
lighting conditions and well identifiable camera features,
our method does not use visual odometry. A description
of the difficulties and challenges faced in unknown terrain
exploration, have been presented by Lacroix et al. [1] and
Lamon [7]. This information along with the work done
by Kmmerle et al. [8] on particle clustering and particle
filter based localization was quite useful in formulating
the EMM used to improve clustering and accuracy of the
3D pose estimation.

3. THE PROPOSED METHOD
3.1 Concept Overview

Considering the full 6 Degrees of Freedom (DOF)
(x, y, z, roll, pitch, yaw) of a terrain rover, a def-
inite relationship between terrain dependent variables
(z, roll, pitch) of the rover and the terrain can be estab-
lished given a specific independent location and heading
(x, y, yaw). Additionally, if actual values of roll and
pitch can be identified using a sensor such as an IMU,
a probabilistic filter may be used to track the rover via
a predict-update cycle. However, since roll and pitch at
multiple locations may be similar, multiple hypotheses
of the rover’s location needs to be maintained. There-
fore, a particle filter may be used in these conditions with
the weights for each particle based on a suitable obser-
vation model which takes into account the difference in
estimated and actual roll and pitch values.

3.2 Fast State Variable Extension (Fast-SVE)
The original SVE model [2] describes the process of

extending the 3 DOF (x, y, yaw) 2D state (X2D) of a
rover to the full 6 DOF (x, y, z, roll, pitch, yaw) ex-
tended state (Xext) by adding the extension variables
(Xsve) estimated using available knowledge of the terrain
in the form of point cloud data.

X2D = [x, y, yaw]T (1)

Xsve = [z, roll, pitch]T (2)

Xext = [x, y, z, roll, pitch, yaw]T (3)

This SVE system is based on the fact that for given
(x, y, yaw) pose of the rover on a terrain there is a spe-
cific (z, roll, pitch) value that the rover could take. As

illustrated by Fig. 1, the rover should lie on the surface
of the terrain and it can not lie sunk into the terrain or
floating over the terrain.

Fig. 1 The rover positioned on the (a) surface of the
terrain, (b) sunk into the terrain or (c) floating over
the terrain.

While the original SVE system had difficulty tracking
a high number of particles in real time, the proposed Fast-
SVE system is built based on multiple improvements and
enhancements to the original SVE system, enabling it to
perform real time 3D pose tracking of high particle counts
thereby improving the efficiency and accuracy of the en-
tire system.

3.3 Stages in Fast-SVE
The Fast-SVE process involves multiple stages.

1. Obtaining Terrain Point Cloud
The point cloud representing the terrain can be gener-

ated using a laser scanner and could be obtained in ad-
vance via a scout robot or in real-time using a laser scan-
ner mounted in front of the rover. The density of the point
cloud is then reduced by using a voxel grid filter in order
to reduce the amount of calculations in the SVE process.
The voxel grid size should be determined based on the
size of the rover’s wheels in order to ensure at least a few
points lie within each wheel. Additionally, noise filter-
ing may need to be carried out to remove outliers in the
generated terrain point cloud.

In the SVE process, in order to reduce computation,
the terrain point cloud is chopped in each particle filter
iteration to include only terrain points that are located di-
rectly below the rover. This is done by considering an
area of (Rover position − R) to (Rover position + R)
of the point cloud in both x and y directions, where R
is the maximum distance from the center of the rover to
the radius of the circumscribed circle around the rover as
shown in Fig. 2.

Fig. 2 Chopped point cloud
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2. Optimization
Since an arbitrary terrain cannot be analytically speci-

fied, a numerical optimization technique needs to be used
in order to calculateXext from theX2D state of the rover
by adding the extension state variables Xsve.

However, since the value of state variables cannot
change suddenly in a high frequency update system the
previous values ofXsve is a suitable starting point for the
optimization process and therefore a local search may be
performed around the previous values of Xsve. The orig-
inal SVE method [2] used a continuous space hill climb
algorithm [9] while the proposed Fast-SVE system uses
a modified hill climb algorithm. While the original hill
climb algorithm iterates over a range of possible values
for the Xsve variables, the modified hill climb algorithm
identifies the cost of the rover having a certain Xsve pose
and optimizes in a direction which would minimize this
cost. Therefore, based on the cost of each hill climb it-
eration the modified algorithm determines the direction
in which it should optimize the selected variable. This
reduces the total number of iterations per Xsve variable
in the hill climb optimization phase of SVE and thus im-
proves the real time operation capability of the Fast-SVE
system.

The original SVE system [2] also incorporated a state
variable known as rocker angle in the extended stateXext

of the rover. This variable, which represents the angle of
the rocker suspension system of a terrain rover was used
in the measurement model of the particle filter. However,
upon analysis it was identified that removing the rocker
angle from the Xext state greatly improves the time ef-
ficiency of the overall system. No loss in tracking capa-
bility was identified after rocker angle removal. Thus, as
the rocker angle is an externally added variable, which is
not included in the 6 DOF state of the rover, the Fast-SVE
algorithm does not consider rocker angle in itsXext state.

3. Cost Calculation
The positioning of each wheel of the rover relative

to the terrain is considered in selecting the most suit-
able Xsve state variable values. The wheels of the rover
are modeled as cylinders and a point inside cylinder test
is carried out for all relevant points in the terrain point
cloud. Costs are then assigned as follows;

• InsideCost - Minimum distance from center of wheel
to a point when the points are inside the cylinder. High
cost. Rover has sunk into terrain.

• OutsideCost - Minimum distance from center of wheel
to a point when the points are outside the cylinder.
Medium cost. Rover is floating over the terrain.

• SurfaceCost - Minimum distance from center of wheel
to a point when the points are on the cylinder surface.
Low cost. Rover is on the terrain.

Total cost is then defined as,

Total cost = InsideCost+OutsideCost+ SurfaceCost (4)

Both inside and outside cost conditions would re-
sult in a high total cost. Additionally a region from

(r− γ) to (r+ γ) (where r is the wheel radius and γ rep-
resents the point cloud noise) is used to account for the
effect of point cloud noise in the surface cost calculation.

This cost calculation is one of the most time consum-
ing processes in the SVE method as it needs to be re-
peated for every point in the considered point cloud re-
gion. The Fast-SVE algorithm optimizes this process by
only calculating costs for points lying within the horizon-
tal cross section of each wheel as shown in Fig. 3.

Fig. 3 Horizontal cross section around wheel

This process is carried out by identifying two unit vec-
tors, one along the axis of the wheel and the other per-
pendicular to the wheel axis and on the horizontal plane.
Each point in the chopped point cloud is then tested to
identify whether it lies within the wheel’s cross section.
Two dot products between each unit vector and the vector
from the edge of the wheel to the test point are obtained.
If these dot products are less than the wheel thickness
or wheel diameter respectively, the test point is consid-
ered to be within the wheel’s cross section. This process
drastically improves the computational efficiency of the
Fast-SVE method and also ensures that the complexity of
the Fast-SVE process becomes independent on rover size
and only dependent on the size of the rovers wheels. This
is especially important in planetary exploration rovers
which tend to have a large overall size but a significantly
smaller wheel size.

Most terrain rovers utilize a ‘go straight’ and then ‘ro-
tate in place’ type of motion. The Fast-SVE algorithm
considers the possibility that the rover may be in the ‘ro-
tate in place’ motion condition and ensures that rover
pose tracking is unaffected during this rotational motion.
This is achieved by identifying the steering angle of the
rover and computing the exact wheel position before per-
forming the SVE process. Here, it is assumed that the
steering angle on all wheels is constant as the rover is
rotating in place. The addition of rotation invariance
does not improve SVE efficiency but rather ensures better
tracking accuracy.

3.4 Implementation of the Particle Filter for 3D Pose
Tracking

In order to carry out 3D pose tracking of the ter-
rain rover with incorporated Fast-SVE algorithm, a Se-
quence Importance Resampling (SIR) particle filter [10]
was used.

bel(Xk) =

∫
p(Xk|Xk−1, uk)bel(Xk−1)dXk−1 (5)
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bel(Xk) = p(Xk|z1:k, u1:k) = ηp(zk|Xk)bel(Xk) (6)

Here u is the input to the rover, z is the measurements
obtained from sensors, η is the coefficient for normaliza-
tion, Xk is the state of the robot at time k and bel(Xk)
is the predicted X2D pose from the motion model of the
particle filter.

The key stages of the particle filter with N particles
are,

1. Enhanced Motion Model (EMM)
The x, y and yaw value of each particle at time k is

calculated based on the values at time k−1 and the inputs
to the rover obtained during the relevant time step. The
conventional rover wheel odometry model [1] is modi-
fied to achieve the enhanced motion model. Considering
that the rover motion takes the form of ‘go straight’ or
‘rotate in place’ commands, the rover is assumed to have
a position tk and rotation matrix Rk at time k. Rk and
tk are calculated based on wheel encoder readings and
gyroscope readings based on the conventional odometry
model. Therefore, the transform matrix Tk of the rover
state at time k is given by,

Tk =

[
Rk tk
0 1

]
(7)

The relative transform Tk−1:k between Tk and Tk−1 is
then given by,

Tk−1:k = [Tk−1]
−1 ∗ Tk (8)

State transition of individual particles is carried out us-
ing the relative transform Tk−1:k. Additionally, in order
to propagate particles further to accommodate for con-
ventional odometry drift a Gaussian kernel is added to
the predicted x, y and yaw values at time k.

Due to the uneven nature of the environment it was
observed that a significant number of particles tend to
degenerate quite quickly if they stray from the path of
the rover. The EMM attempts to improve the probability
of survival of these particles with low effectiveness (low
weight) which would otherwise simply be deleted in the
resampling phase of the next particle filter iteration. This
is carried out by selecting particles with very low effec-
tiveness and then providing these particles with a mean
shift in the direction of particles with high effectiveness.
This also leads to a more concentrated group of particles.

Additionally certain areas of the rover’s environment
with low friction in which wheel slippage occurs such as
steep slopes and loose gravel cause wheel encoder based
odometry to become highly inaccurate. In these condi-
tions a backup strategy is required to track the rover’s 2D
pose. The EMM process selectively repurposes a portion
of the lowest weight particles to achieve this task. After
the prediction cycle of the particle filter, particles with the
lowest weights are deleted and replaced by particles gen-
erated from a Gaussian kernal centered around the best
pose of the previous particle filter iteration. This system

identifies slippage by checking whether the rover is still
within a window of its previously known position. There-
fore when such a slippage occurs the rover’s correct pose
is detected and the particles which have propogated away
from the rover’s actual position due to incorrect odometry
values are then provided with a mean shift back towards
the correct rover position. The EMM thus ensures that
accurate pose tracking is maintained even in low friction
conditions.

2. Fast-SVE Application
This is the stage in which Fast-SVE is carried out on

the particles having X2D state in order to extend them
into the full Xext state.

3. Measurement Model
The measurement model carries out the process of

weighting each particle based on the error between the
particles estimated roll and pitch value from the Fast-SVE
system and the measured roll and pitch values obtained
from IMU sensors. These importance weights ŵ(i)

k are
calculated as follows,

ŵ
(i)
k = w

(i)
k−1p(zk|X

(i)
k ). (9)

Since roll and pitch state variables can be modeled as
Gaussian as in [2], p(zα|Xα) may be modeled as follows
where α is either roll or pitch and σα is IMU noise.

p(zα|Xα) ∝
1

σα
√
2π

exp

[
−1

2

(
Xα − zα
σα

)2
]

(10)

Assuming measurements of roll and pitch are indepen-
dent of each other, the likelihood p(zk|Xk) of the proba-
bilistic measurement model can be derived as follows.

p(zk|Xk) ∝ p(zroll|Xroll)p(zpitch|Xpitch) (11)

p(zk|Xk) ∝ exp

[
−1

2

∑(
Xα − zα
σα

)2
]

(12)

Normalizd weights w(i)
k are then calculated from the

weights assigned to each particle by the measurement
model.

w
(i)
k =

ŵ
(i)
k∑N

i=1 ŵ
(i)
k

(13)

4. Resampling Stage
The process of resampling is carried out if the number

of effective particles (Neff ) fall below a defined thresh-
old.

Neff =

[
N∑
i=1

(
w

(i)
k

)2]−1

(14)

In the proposed implementation the systematic resam-
pling technique [11] is used to carry out the resampling
process. Even though this process is computationally ex-
pensive, the frequency of resampling is reduced due to
the EMM modification.
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4. SIMULATIONS AND RESULTS
The Gazebo framework [12] was used to develop a

simulation of a terrain rover and its 3D environment as
shown in Fig. 1. 3D pose tracking using the Fast-SVE
with EMM system was implemented and verified based
on results obtained from the simulator. The computer
used for simulations and testing was an Intel i7 6th gen-
eration 4.2GHz PC with 16GB of RAM.

4.1 Fast-SVE Improvements and Validation
Multiple improvements allowed the Fast-SVE method

to achieve a 4.5x speedup over the original SVE system
[2]. Due to this speedup the Fast-SVE method is capable
of handling upto 4.5 times more particles or a 4.5 times
increase in filter update frequency leading to more accu-
rate 3D pose tracking.

In the simulation the rover model was driven over a
rough terrain and in each time step the Xsve states were
estimated and then compared with their ground truth val-
ues. Results from the comparison of ground truth (ac-
tual) values with estimated values (from Fast-SVE) for
the three Xsve state variables are shown in Fig. 4. As
evidenced in Fig. 4 the estimated values of the Xsve state
variables closely follow their acual ground truth values.
This indicates that the Fast-SVE system is capable of ob-
taining a significant speedup without any noticable loss
in tracking capability. The overall Root Mean Square
(RMS) error in estimation for each Xsve state variable
is as follows,

• ZRMSE = 3.469 mm
• RollRMSE = 0.668 deg
• PitchRMSE = 0.759 deg

Fig. 4 Comparison of (a) roll, (b) pitch and (c) z state
variables.

4.2 3D Pose Tracking Validation using Fast-SVE
The particle filter based 3D pose tracking system with

incorporated Fast-SVE and EMM was tested by driving
the rover model over a simulated rough terrain using both
’go straight’ and ’rotate in place’ forms of movement

commands. Multiple tests were conducted with varying
numbers of particles and varying levels of terrain friction.
Additionally, for comparison the same test was carried
out under identical conditions for the basic conventional
odometry (Conv-Odom) based tracking method as well
as for the original SVE (Orig-SVE) [2] based tracking
method.

Figure 5 shows the generated plots containing the er-
ror in tracking for all three tracking methods mentioned
above. Here, error in tracking is defined as the difference
between the absolute 3D pose and the estimated 3D pose
of the rover. These tests were carried out using a friction
value of 0.8 to allow the wheels to slip on the terrain. The
particle count in the particle filter was set to 25 particles
for the first test and to 50 particles for the second test.
These levels of low particle counts are acceptable in SVE
based particle filter systems since only theX2D state vari-
ables are used in the prediction stage of the particle filter
(since SVE reduces the number of state variables needed
to be predicted).

The results in Fig. 5 show that overall the Fast-SVE
algorithm performs better than the other two methods
and has a significantly lower mean error. The Conv-
Odom method performs the worst especially since the er-
ror grows rapidly due to slipping caused by low friction
surfaces. The Fast-SVE method also shows improved
performance when the particle count is increased from
25 to 50 particles while the original SVE method has a
reduction in performance.

This significant relative performance gain of the Fast-
SVE algorithm compared to the original SVE algorithm,
with increasing number of particles, is due to the fact that
even though mean error in pose tracking reduces with in-
creasing particle count, the original SVE algorithm strug-
gles to perform computations in real time at high particle
counts. The mean errors of three tracking methods for
both particle counts are given in Table 1.

Fig. 5 Comparison of Fast-SVE, Orig-SVE and Conv-
Odom based tracking error using 25 particles and 50
particles

Table 1 Mean error (m) for different particle counts

Particle Count Conv-Odom Original-SVE Fast-SVE

25 Particles 0.450 0.245 0.127
50 Particles 0.450 0.359 0.073

The effect of friction on the 3D pose tracking process
was also tested. Friction values used were 0.5 for low
friction and 0.9 for high friction. Results of these fric-
tion modification tests are shown in Fig. 6. In these
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tests the particle count was kept at 25 particles to ensure
consistency in comparison. The mean errors in the 3D
pose tracking process for all three methods under vary-
ing friction values is shown in Table 2. The results show
that, as expected, tracking accuracy increases with in-
creasing levels of friction. It is also evident from the
values in Table 2 that the Fast-SVE method outperforms
the other methods over both friction conditions. The low
friction plot clearly indicates the action of the EMM as
when a large slip occurs at time 120s the Fast-SVE with
EMM method is capable of maintatining accurate track-
ing while both other systems fail. The observed trend is
that the relative benefits of these SVE based systems in-
crease as the value of friction reduces.

Fig. 6 Comparison of Fast-SVE, Orig-SVE and Conv-
Odom based tracking for high friction and low fric-
tion values

Table 2 Mean error (m) for different friction levels

Friction level Conv-Odom Original-SVE Fast-SVE

High Friction 0.372 0.249 0.117
Low Friction 1.000 0.516 0.143

5. CONCLUSION
In this paper we have proposed a Fast State Vari-

able Extension (Fast-SVE) method in which 2D state
variables (x, y, yaw) are extended to the full 3D state
(x, y, z, roll, pitch, yaw) using terrain knowledge, to
achieve real time 3D position tracking of a terrain rover
with the use of a particle filter. An Enhanced Motion
Model (EMM) was also proposed to improve the accu-
racy of 2D state variable prediction which enabled high
accuracy tracking even in low friction environments and
reduced the need for very high particle counts. The Fast-
SVE system with EMM is therefore able to ensure accu-
rate real time tracking via increases in particle counts and
faster particle filter update frequencies.

This system is limited on its dependancy on accurate
terrain knowledge. Terrain knowledge can be improved
by using high quality depth sensors leading to low point
cloud noise. The system also performs poorly on exten-
sively flat terrain since particles weighted based on roll
and pitch will all be assigned equal weights. To address
this issue other measurements like x, y or yaw obtained
from external verification sources such as slip detection
and laser based pointcloud odometry should be used in
the weighting process of the particle filter when the rover
is on flat terrain.
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